If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-1323=0
a = 9; b = 0; c = -1323;
Δ = b2-4ac
Δ = 02-4·9·(-1323)
Δ = 47628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{47628}=\sqrt{15876*3}=\sqrt{15876}*\sqrt{3}=126\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126\sqrt{3}}{2*9}=\frac{0-126\sqrt{3}}{18} =-\frac{126\sqrt{3}}{18} =-7\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126\sqrt{3}}{2*9}=\frac{0+126\sqrt{3}}{18} =\frac{126\sqrt{3}}{18} =7\sqrt{3} $
| 132-x=250 | | G(x)=7x+20 | | 3-(x+1)=2(-1-x) | | 2(x+3)/4=3(x-1)/5 | | -13x+4(x-8)=-6(x+2)+19 | | 172=114-u | | 2/5t+-1=5 | | 7(n-6)-9(10n+2)=-60 | | -10+-13f+3f^2=0 | | 13x-17=133 | | 8x-3+7x=17 | | 1/8w=12 | | X+36=2x+1 | | 168-y=268 | | 2x2-3x-13=0 | | -5-5(8x)=0 | | 9x2+16=0 | | 4+3x=3x-2 | | 3÷5a-1÷5a-3=17 | | 16x-27=9x-6x | | x+15=1/2(3x+15) | | 19x-31=11x+1 | | 16-27=9x-6x | | 0.3x+14.9=32 | | n/5=8/14 | | 2/3(6n)=-4 | | 38=2w+8 | | 9(t+7)=99 | | 2p=3p | | 5/6k=1/2 | | 4=1.84^t | | 0,5(4x+1)+2(2-0,5)=(4,5-2,5x) |